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Abstract In the modelling of the continuous flow bioreactor, due to uncertainties in
the environment the growth rate parameter is under perturbation of white noise, which
results in a mathematical model governed by a set of stochastic differential equations.
In this paper, assume the Contois growth rate is used and then we first show that the
stochastic model has always a unique positive solution. Then long time behavior of the
model is studied. Our study shows that both the washout and non-washout equilibria
are stochastically stable. At the end, we carry out some numerical simulation, which
supports our theoretical conclusion well. Also, by the quantities introduced in the last
section, both residence time and intensity of the noise have significant effect on the
performance of the reactor.

1 Introduction

Wastewater, such as the one from the food industries contains a complex mixture of
biodegradable organic materials, such as fresh and partially decomposed food scraps
and crop-residues, that may be in suspension or dissolved. The purpose of wastewater
treatment is to remove pollutants what can harm the aquatic environment. Let S(t)
be the concentration of substrate and X (t) be the concentration of microorganism
at time t , respectively. Then after non-dimensionalization, a mathematical model for
wastewater treatment process can have the following form.

{ d S
dt = 1

τ
(S0 − S) − μm

α
Xg(S, X) − mS X,

d X
dt = β 1

τ
(X0 − X) + γ R

τ
X + μm Xg(S, X) − kd X,

(1.1)
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Table 1 Growth rate functions

Type of growth-rate kinetics Monod’s Contois’ Tessier’s

g = μm S
Ks+S μmax

(
S/X

Kx +S/X

)
μm

(
1 − exp

(
− S

Ks

))
References [11,13] [1,8,11] [9–12]

Depending on the values of the parameters, Eq. (1.1) represents two types of models:
continuous flow reactors used in treatment of industrial wastewater if β = γ = 1 and
membrane reactors designed for domestic wastewater treatment if γ = 0. Function
g(S, X) is the growth rate and in the published references three types of growth rate
are widely used, which are tabulated as Table 1 although other growth rates, such as
Moser, Andrews, Edwards and Luong’s, were also used in open literatures [11] and
the references therein.

When there is no microorganism in the influent, namely X0 = 0, it is easy to
check that the dynamics of a reactor model with idealized recycle is equivalent to the
idealized membrane reactor, and that of a reactor model with non-idealized recycle
is equivalent to a non-idealized membrane reactor model. In other words, the case
of β = γ = R = 1 is equivalent to the case of β = γ = 0 and the case of
0 < β < 1, γ = 0 is equivalent to the case of β = γ = 1, 0 < R < 1. Please also
see [1,8,9,13] for the cases with specific growth rates.

Reasonably good predications can be provided by deterministic models. However,
in reality, uncertainties are always there. Too often these uncertainties are ignored,
which limits our prediction. Recently, lots of work in this direction have been carried
out and being developed very quickly due to the needs in the related research area
[1–7,14], to name but a few.

For the continuous flow reactor models, Chen and Zhang [1] investigated one with
Monod’s growth rate and uncertainties in the recycle part. They showed that the equilib-
rium solutions are stochastically stable. Assume due to the noise from the environment,
the growth rate parameter, μm is perturbed. Then our intension in this paper is to study
the effect of this perturbation on the equilibrium solution. If the Contois growth rate
is used as in [8], after dimensionalization g(S, X) takes the form of g(S, X) = S

S+X .

And also the initial concentration, S0 can be rescaled to 1. More precisely, in this study
we have

β = γ = 1, 0 ≤ R ≤ 1, X0 = 0, S0 = 1

and

μm → μm + δdW (t)

where σ is the noise intensity. Then we have a stochastic model in Itô form as follows.

{
d S
dt = 1

τ
(1 − S) − μm

α
SX

S+X − mS X − δ
α

SX
S+X

dW (t)
dt ,

d X
dt = − 1

τ
X + R

τ
X + μm

SX
S+X − kd X + δ SX

S+X
dW (t)

dt .
(1.2)
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When σ = 0, namely for the deterministic model, the straightforward calculation
or reference [8] suggests the model has at most two equilibria: a washout equilibrium
E1(1, 0) and a non-washout equilibrium

E2(S∗, X∗) = α

A
(1 − R + kdτ, R − 1 + (μm − kd)τ ) ,

where

A = α(1 − R + kdτ) + [(R − 1) + (μm − kd)τ ] ∗ [(mSα + kd)τ + 1 − R].

Notice that 0 ≤ R ≤ 1 the non-washout equilibrium E2 is physically meaningful
when

τ >
1 − R

μm − kd
, 0 < kd < μm .

Then from [8] we know that both E1 and E2 are stable when E2 exists.
The rest of the paper is organised as follows. In Sect. 2, we show that there is a

unique nonnegative solution no matter how large the intensities of noise is. Section 3
will demonstrate if the noise satisfied certain condition, then the washout equilibrium
E1 is stochastically asymptotically stable. In Sect. 4, we shall show the stochastic
stability of the non-washout equilibrium, E2. Section 5 concludes the paper with
simulations and evaluation of the efficiency of the bioreactor.

2 Existence and uniqueness of the positive solution of model (1.2)

In this section we shall prove that model (1.2) has unique positive solution for given
postive initial condition.

Theorem 2.1 The Eq. (1.2) has a unique solution (S(t), X (t)) for t ∈ [0,∞) given
initial value (S(0), X (0)) ∈ R2+ = {x ∈ R2 : xi > 0, i = 1, 2}. Furthermore, the
solution will remain in R2+ with probability 1, namely (S(t), X (t)) ∈ R2+ for all t ≥ 0
almost surely.

Proof Since the coefficients of model (1.2) are locally lipschitz continuous for any
given value (S(0), X (0)) ∈ R2+, there is a unique local solution (S(t), X (t)) for t on
[0, τe), where τe is the explosion time. Next we prove that this solution is global by
showing that τe = ∞ a.s.. For this purpose, let m0 > 0 be sufficiently large so that
S(0) ∈ [ 1

m0
, m0], X (0) ∈ [ 1

m0
, m0]. For each integer m ≥ m0, define the stopping

time as the following

τm = inf

{
t ∈ [0, τe) : S(t) ∈

(
1

m
, m

)
or X (t) ∈

(
1

m
, m

)}
,

where throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set).
Clearly, τm is increasing as m → ∞ and τ∞ = lim

m→∞τm ≤ τe a.s.. Then in the rest of

this section, we only need to show that τ∞ = ∞ a.s..
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If this statement is not true, then for any given T > 0 there is a ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε.

Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T } ≥ ε (2.1)

for all m ≥ m1. Define a C2-function V : R2+ → R+,

V (S(t), X (t)) = c(S − 1 − ln S) + (X − 1 − ln X),

where c is a positive constant to be determined. Then V (S, X) ≥ 0 since u−1−ln u ≥
0,∀u > 0. Using Itô’s formula, we get

dV = cd S − c

S
d S + c

2S2 (d S)2 + d X − 1

X
d X + 1

2X2 (d X)2

= LV dt +
(

αδ − cδ

α

SX

S + X
+ cδ

α

X

S + X
− δ

S

S + X

)
dW (t),

where

LV = c

τ
(1 − S) − c

α
μm

SX

S + X
− cmS X − c

Sτ
(1 − S) + c

α
μm

X

S + X

+ cmS
X

S
+ c

2S2

δ2

α2

S2 X2

(S + X)2 − 1

τ
X + R

τ
X + μm

SX

S + X
− kd X + 1

τ
− R

τ

−μm
S

S + X
+ kd + δ2

2X2

S2 X2

(S + X)2 .

Note that R ∈ [0, 1] is the recycle rate, and S(t) and X (t) are real numbers satisfied
0 < S(t) < ∞, 0 < X (t) < ∞. We choose c = α, then

LV = α

τ
(1 − S) − μm

SX

S + X
− αmS X − α

Sτ
+ α

τ
+ μm

X

S + X
+ αmS

X

S

+ δ2

2α

X2

(S + X)2 − 1

τ
X + R

τ
X + μm

SX

S + X
− kd X + 1

τ
− R

τ
− μm

S

S + X

+ kd + δ2

2

S2

(S + X)2 ≤ 2
α

τ
+μm + αmS K1+ δ2

2α
+ 1

τ
− R

τ
+kd + δ2

2
� K .

Therefore,

τm∧T∫
0

dV (S(r), X (r))

≤
τm∧T∫
0

K dr +
τm∧T∫
0

(
αδ − cδ

α

SX

S + X
+ cδ

α

X

S + X
− δ

S

S + X

)
dW (t).
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Taking expectation on each side of the above inequality yields

E[V (S(τm ∧ T ), X (τm ∧ T ))] ≤ V (S(0), X (0)) + E

τm∧T∫
0

K dr

≤ V (S(0), X (0)) + K T . (2.2)

Let 	m = {τm ≤ T } for m ≥ m1. From (2.1), we have P(	m) ≥ ε. Note that for
every ω ∈ 	m , there is at least one of S(τm, ω), X (τm, ω) equals either m or 1

m . If
S(τm, ω) = m or 1

m , then

V (S(τm ∧ T ), X (τm ∧ T )) ≥ c(m − 1 − c ln m) ∧ c

(
1

m
− 1 − ln

1

m

)
,

while if X (τm, ω) = m or 1
m , then

V (S(τm ∧ T ), X (τm ∧ T )) ≥ (m − 1 − ln m) ∧
(

1

m
− 1 − ln

1

m

)
.

Consequently,

V (S(τm ∧ T ), X (τm ∧ T ))

≥ c(m−1 − ln m) ∧ c

(
1

m
− 1 − ln

1

m

)
∧ (m − 1 − ln m) ∧

(
1

m
− 1 − ln

1

m

)
.

It then follows from Eqs. (2.1) and (2.2) that

V (S(0), X (0)) + K T

≥ E
[
1	m (ω)V (S(τm ∧ T ), X (τm ∧ T ))

]

≥ c(m−1−ln m) ∧ c

(
1

m
− 1 − ln

1

m

)
∧ (m − 1 − ln m) ∧

(
1

m
− 1 − ln

1

m

)
.

where 1	m (ω) is the indicator function of 	m . Letting m → ∞ leads to the contradic-
tion ∞ > V (S(0), X (0)) + K T = ∞. It implies that τ∞ = ∞ a.s.. This completes
the proof. ��

3 Stochastically asymptotical stability of the washout equilibrium of (1.2)

From Sect. 1 we know for the deterministic model, the washout equilibrium E1(1, 0)

is always stable when R − 1 < (kd − μm)τ. And it is easy to verify that it is still
the equilibrium of the stochastic model (1.2). In this section, for the stochastic case
we shall investigate the stability of E1. In other words, we are interested in the effect
of uncertainty on the stability of E1. The main result of this section can be stated as
follows.
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Theorem 3.1 The washout equilibrium E1(1, 0) of model (1.2) is stochastically
asymptotically stable when the intensity of the noise, δ satisfies

δ2 < 2

(
1 − R

τ
+ kd − μm

)
α2

1 + α2 .

Proof Firstly, we shift the equilibrium solution of (1.2) to the origin by letting X1(t) =
S(t) − 1, X2(t) = X (t), which results a model of the following form

{
d X1 = (− 1

τ
X1 − μm

α
(X1+1)X2
1+X1+X2

− ms X2)dt − δ
α

(X1+1)X2
1+X1+X2

dW (t),

d X2 = (− 1
τ

X2 + R
τ

X2 + μm
(X1+1)X2
1+X1+X2

− kd X2)dt + δ
(X1+1)X2
1+X1+X2

dW (t).
(3.1)

Secondly, we linearize (3.1) at the origin, (0, 0) of the new coordinate system. The
linearization is given by

{
d X1 = (− 1

τ
X1 − μm

α
X2 − ms X2

)
dt − δ

α
X2dW (t),

d X2 = (− 1
τ

X2 + R
τ

X2 + μm X2 − kd X2
)

dt + δX2dW (t).
(3.2)

Our proof will then be splitted into 2 steps: (1) To prove the stability of the equi-
librium of the linearized model (3.2) and (2) To prove the stability of the equlib-
rium of the nonlinear model (3.1). According this idea, next we show the equilibrium
(X1, X2) = (0, 0) of model (3.2) is stochastically asymptotically stable. To this end,
define a C2-function V as

V = X2
1 + X2

2 + AX2,

where A is a positive constant. Obviously, V is positive definite, and along the trajec-
tories of model (3.2) we have

dV = 2X1d X1 + (d X1)
2 + 2X2d X2 + (d X2)

2 + Ad X2

= LV dt +
(

−2
δ

α
X1 X2 + 2δX2

2 + AδX2

)
dW (t),

where

LV = −2

τ
X2

1 − 2μm

α
X1 X2 − 2ms X1 X2 + δ2

α2 X2
2 − 2

τ
X2

2 + 2R

τ
X2

2 + 2μm X2
2

−2kd X2
2 + δ2 X2

2 + A

(
− 1

τ
+ R

τ
+ μm − kd

)
X2.

We claim that LV is a negative function. In fact,

(i) If X1 ≥ 0, then

LV ≤ −2

τ
X2

1 +
(

2R

τ
− 2

τ
+ α2 + 1

α2 δ2 + 2μm − 2kd

)
X2

2 .
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Obviously when δ2 < 2( 1−R
τ

+ kd −μm) α2

1+α2 , LV ≤ 0, and LV = 0 if and only
if X1 = X2 = 0.

(ii) If X1 < 0, we can get −X1 < 1 from S = X1 + 1 > 0, then

LV ≤ −2

τ
X2

1 + 2μm

α
X2 + 2ms X2 + δ2

α2 X2
2 − 2

τ
X2

2 + 2R

τ
X2

2 + 2μm X2
2

−2kd X2
2 + δ2 X2

2 + A

(
− 1

τ
+ R

τ
+ μm − kd

)
X2.

We then can choose

A =
2μm
α

+ 2ms
1
τ

− R
τ

− μm + kd
,

which yields

LV ≤ −2

τ
X2

1 +
(

2R

τ
− 2

τ
+ α2 + 1

α2 δ2 + 2μm − 2kd

)
X2

2 .

Again, when δ2 < 2
( 1−R

τ
+ kd − μm

)
α2

1+α2 , LV ≤ 0, and LV = 0 if and only if
X1 = X2 = 0. Therefore the (0, 0) origin model (3.2) is globally stochastic asymp-
totically stable.

Next, we show the origin (0,0) of model (3.1) is also stochastically asymptoti-
cally stable, namely the washout equilibrium E1(1, 0) of model (1.2) is stochastically
asymptotically stable. Notice

| f (t, X) − F · X | + |g(t, X) − G · X |

=
√(

μm

α
X2 − μm

α

(X1 + 1)X2

1 + X1 + X2

)2

+
(

μm
(X1 + 1)X2

1 + X1 + X2
− μm X2

)2

+
√(

δ

α
X2 − δ

α

(X1 + 1)X2

1 + X1 + X2

)2

+
(

δ
(X1 + 1)X2

1 + X1 + X2
− δX2

)2

=
√

2

(
S0

1 + S0
X2 − (X1 + S0)X2

1 + X1 + S0

)2

=
√(

μ2
m

α2 +α2

)[
(X1 + 1)X2

1 + X1 + X2
− X2

]2

+
√(

δ2

α2 +α2

) [
(X1 + 1)X2

1 + X1 + X2
− X2

]2

=
⎛
⎝

√
μ2

m

α2 + α2 +
√

δ2

α2 + α2

⎞
⎠

∣∣∣∣ (X1 + 1)X2

1 + X1 + X2
− X2

∣∣∣∣

=
⎛
⎝

√
μ2

m

α2 + α2 +
√

δ2

α2 + α2

⎞
⎠

∣∣∣∣∣
X2

2

1 + X1 + X2

∣∣∣∣∣ .
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Then by [5] and [7], for small ε > 0, when |X1| < ε, |X2| < ε, choose l =
2 max

{√
μ2

m
α2 + α2,

√
δ2

α2 + α2

}
,

| f (t, X) − F · X | + |g(t, X) − G · X |
≤ lε

∣∣∣∣ X2

1 + X1 + X2

∣∣∣∣
≤ lε.

Therefore the washout equilibrium E1(1, 0) of model (1.2) is stochastically asymp-
totically stable. This completes the proof. ��

4 Asymptotic behavior of the non-washout equilibrium of the deterministic
model

Generally, E2 is not an equilibrium of stochastic model (1.2) any more when σ = 0.
However, since model (1.2) can be treated as the perturbation of model (1.1) which
has an non-washout equilibrium E2, it is reasonable to consider the microorganism
will be persist if the solution of model (1.2) is going around E2 at the most of time.
In this sense, we have conclusion as follows.

Theorem 4.1 Let (S(t), X (t)) be the solution of model (1.2) with initial value

(S(0), X (0)) ∈ R2+. Then when δ2 ≤ min
{

1
4τ

,
[ 2−2R

τ
+ 2kd + 2αmS + ( 2α−αR

τ
+

αkd + α2mS
)( 2S∗

X∗ − 1
X∗

)] ∗ 1
8

}
,

lim
t→∞ sup

1

t
E

t∫
0

[(
S(u) − S∗)2 + r2 (

X (u) − X∗)2
]

du ≤ kσ ,

where

r2 =
8δ2 − 2

τ
+ 2R

τ
− 2kd − 2αmS − ( 2α−αR

τ
+ αkd + α2mS

) (
2S∗
X∗ − 1

X∗
)

8δ2α2 − 2α2

τ

,

kσ = c
2α2

τ
− 8δ2α2

,

c = 8δ2 (−R X∗ + τkd X∗ + ατmS X∗)2

+4δ2α2 +
(

2α − αR

τ
+ αkd + α2mS

)(
1

X∗ + (S∗ + X∗) δ

μm

)
.
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Proof Define a C2-function V as follows

V = [α(S − S∗) + (X − X∗)]2 +
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)

× (S∗ + X∗)
μm X∗

(
X − X∗ − X∗ ln

X

X∗

)
,

where δ2 ≤ min
{ 1

4τ
,
[ 2−2R

τ
+2kd +2αmS +( 2α−αR

τ
+αkd +α2mS

)( 2S∗
X∗ − 1

X∗
)]∗ 1

8

}
.

Then V is positive definite. Using Itô’s formula, we get

dV = 2
[
α(S − S∗) + (X − X∗)

]
(αd S + d X) + α2(d S)2 + (d X)2

+
(

4α − 2αR

τ
+2αkd +2α2mS

)
(S∗ + X∗)

μm X∗

[(
1− X∗

X

)
d X + X∗

2X2 (d X)2
]

= LV dt+
(

4α − 2αR

τ
+2αkd +2α2mS

)
(S∗ + X∗)

μm X∗
(
X − X∗) δ

S

S + X
dW (t),

where

LV = 2
[
α(S − S∗) + (X − X∗)

] (
α

τ
− α

τ
S − αmS X − 1

τ
X + R

τ
X − kd X

)

+ 2δ2 S2 X2

(S + X)2 +
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
(S∗ + X∗)

μm X∗

×
[
(X − X∗)μm

(
S

S + X
− S∗

S∗ + X∗

)
+ X∗δS2

2(S + X)2

]
.

Note that − 1
τ

X∗ + R
τ

X∗ +μm
S∗ X∗

S∗+X∗ −kd X∗ = 0 implies μm
S∗

S∗+X∗ = 1
τ
− R

τ
+kd .

Then we have

α

τ
= α

τ
S∗ + 1

τ
X∗ − R

τ
X∗ + kd X∗ + αmS X∗

and

[2α(S − S∗) + 2(X − X∗)]
(

α

τ
− α

τ
S − αmS X − 1

τ
X + R

τ
X − kd X

)

= [2α(S−S∗)+2(X −X∗)]
[
−α

τ
(S − S∗)+

(
− 1

τ
+ R

τ
− kd − αmS

) (
X − X∗)]

=
(

−2α2

τ
(S − S∗

)2

+
(

−2

τ
+ 2R

τ
− 2kd − 2αmS

) (
X − X∗)2

+
(

−4α

τ
+ 2αR

τ
− 2αkd − 2α2mS

) (
X − X∗) (S − S∗),

which imply the following hold.
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2δ2 S2 X2

(S + X)2 ≤ 2δ2 X2

≤ 4δ2[(X + αS − α)2 + α2]
= 4δ2[(X + αS − αS∗ − X∗ + R X∗ − τkd X∗ − ατmS X∗)2 + α2]
= 4δ2[(X − X∗) + α(S − S∗) + (R X∗ − τkd X∗ − ατmS X∗)]2

+ 4δ2α2 ≤ 8δ2(X − X∗)2 + 8α2δ2(S − S∗)2 + 8δ2(−R X∗

+τkd X∗ + ατmS X∗)2 + 4δ2α2,

and note that X∗ ∈ [0, 1] and S∗ ∈ [0, 1], S(t) and X (t) are real numbers satisfied
0 < S(t) < ∞, 0 < X (t) < ∞, then

(
4α − 2αR

τ
+ 2αkd + 2α2mS

)
(S∗ + X∗)

μm X∗

×
[
(X − X∗)μm

(
S

S + X
− S∗

S∗ + X∗ + X∗δS2

2(S + X)2

)]

=
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
(S∗ + X∗)

μm X∗

×
[
(X − X∗)μm

SX∗ − S∗ X

(S + X)(S∗ + X∗)
+ X∗δS2

2(S + X)2

]

≤
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
1

X∗ (X − X∗) SX∗ − S∗ X + 1

S + X + 1

+
(

2α − αR

τ
+ αkd + α2mS

)
(S∗ + X∗) δ

μm

≤
(

4α − 2αR

τ
+2αkd +2α2mS

)
1

X∗ (X −X∗)
(
SX∗−S∗ X∗+S∗ X∗ − S∗ X +1

)

+
(

2α − αR

τ
+ αkd + α2mS

)
(S∗ + X∗) δ

μm

≤
(

4α − 2αR

τ
+ 2αkd + 2α2mS

) (
X − X∗) (

S − S∗)

−
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
S∗

X∗ (X − X∗)2

+
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
1

X∗ (X − X∗)

+
(

2α − αR

τ
+ αkd + α2mS

)
(S∗ + X∗) δ

μm

≤
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
(X − X∗)(S − S∗)

−
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
S∗

X∗
(
X − X∗)2
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+
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
1

X∗

[
(X − X∗)2 + 1

2

]

+
(

2α − αR

τ
+ αkd + α2mS

)
(S∗ + X∗) δ

μm

=
(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
(X − X∗)(S − S∗)

−
[(

4α − 2αR

τ
+ 2αkd + 2α2mS

)
S∗

X∗

−
(

2α − αR

τ
+ αkd + α2mS

)
1

X∗

]
(X − X∗)2

+
(

2α − αR

τ
+ αkd + α2mS

)
(S∗ + X∗)δ

μm
.

Therefore

LV ≤
(

8α2δ2 − 2α2

τ

) (
S − S∗)2

+
[

8δ2 − 2

τ
+ 2R

τ
− 2kd − 2αmS

−
(

2α − αR

τ
+ αkd + α2mS

)(
2S∗

X∗ − 1

X∗

)] (
X − X∗)2 + c.

where

c = 8δ2 (−R X∗ + τkd X∗ + ατmS X∗)2 + 4δ2α2

+
(

2α − αR

τ
+ αkd + α2mS

)(
1

X∗ + (S∗ + X∗) δ

μm

)
.

From

E

t∫
0

dV = E

t∫
0

LV dt,

we know

lim
t→∞ sup

1

t
E

t∫
0

[
(S(u) − S∗)2 + r2 (

X (u) − X∗)2
]

du ≤ kσ ,

where r2and kσ are defined in the theorem statement. This completes the proof. ��

5 Numerical simulation and conclusion

In this section, we first carry out numerical simulations to demonstrate the stochastic
stability of the equilibrium solutions, E1 and E2, and then use the pre-defined functions
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Fig. 1 Comparison of the dynamics in deterministic model and stochastic model with δ = 0.2, 0.3, 0.5,

respectively

to assess the performance of the bioreactor modeled in this paper. Our simulations
agree well with our theoretical analysis in previous Sects. 3 and 4. The performance
of the bioreactor can be affected by the noise in certain degree.

5.1 Stochastic stability of E1 and E2

First, we demonstrate washout equilibrium E1 is stochastically stable. To this end,
we choose (S(0), X (0)) = (0.5, 0.5) as the initial value in model (1.2), and let R =
0.8, α = 1, kd = 0.6, μm = 0.4, mS = 0.5, τ = 2, and δ = 0.1. Since R − 1 =
−0.2, (kd −μm)τ = 0.4 which satisfies R −1 < (kd −μm)τ and δ2 < 2( 1−R

τ
+kd −

μm) α2

1+α2 = 0.3, from Sect. 3, the equilibrium E1(1, 0) is globally asymptotically
stable. Our simulation also supports this conclusion as shown in Fig. 1, where we
show the effect from different intensities, δ of noises. As seen, when δ2 is relatively
small such as less than 0.1, there are not much effect from the noise; when δ2 is large,
but less than 0.3 it is still stable although the effect is obvious. In practice, it implies
if the uncertainty can be controlled within certain range, the microorganism will die
out eventually.

Next we show E2 is stochastically stable too. For this purpose, in our simulation,
the parameters are set as R = 0.8, α = 1, kd = 0.4, μm = 0.6, mS = 0.5, τ = 2.

123



1088 J Math Chem (2013) 51:1076–1091

0 100 200 300 400 500 600 700 800
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

S
,X

0 100 200 300 400 500 600 700 800
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

S
,X

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

S
,X

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

S
,X

a b

dc

Fig. 2 Comparison of the dynamics in deterministic model and stochastic model with σ = 0.06, 0.1, 0.3,

respectively

Since τ > 1−R
μm−kd

= 1, 0 < kd < μm , model (1.1) has an unique positive equilibrium

E2(S∗, X∗) = ( 5
7 , 1

7 ), which according to the result in Sect. 4, when σ 2 ≤ min{ τ
2 , τ −

τ R
2 + kdτ

2 + msτ
2 } = min{1, 1.9} = 0.125, is stable. Our simulation in this case uses

(0.66, 0.18) as the initial value. It shows in Fig. 2 that the solution of the model
(1.2) goes around the point E2(S∗, X∗) at the most of time, which implies E2 is
stochastically stable when σ satisfies the condition in Theorem 4.1.

While for δ2 ≤ min{ 1
4τ

, [ 2−2R
τ

+ 2kd + 2αmS + ( 2α−αR
τ

+ αkd + α2mS)(
2S∗
X∗ −

1
X∗ )] ∗ 1

8 } = min{0.125, 0.625} = 0.125 E2 is unstable, please see Fig. 3, which
shows the long time behavior of the model (1.2) with δ = 0.8, 1.8 respectively.

The implication of Figs. 2 and 3 is that in practice the microorganisms can persist if
the noise is controlled in certain level due to the positive equilibrium is stochastically
stable.

5.2 Performance of the bioreactor

In order to quantitatively assess the performance of the bioreactor, we introduce the
following dimensionless quantities, for more details please see [8] and the references
therein. Let (S∗, X∗) be the equilibrium solution as defined in the previous sections.
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Fig. 3 The long time behavior of the stochastic model with δ = 0.8, 1.8, respectively

Then we have the specific utilisation and yield defined by

U = S0 − S∗

X∗
1

τ
and Y = X∗

S0 − S∗ (5.1)

respectively. In what follows we introduce the treatment/process efficiency

E = 100 × S0 − S∗

S0
, (5.2)

the rate of waste treatment

W = S0 − S∗

τ
(5.3)

and the effective yield

Ye = X∗

S0
. (5.4)

Notice that from (1.1)

S0 − S∗

X∗ = (mSα + kd)τ + β − γ R

α
(5.5)

which implies that the utilization and yield are independent of the noise intensity,
σ. Please also see the first subfigure of Fig. 4. It illustrates the yield, Y against the
residence time for different values of σ . However, for the effective yield (Ye), rate of
waste treatment (W) and treatment efficiency (E) they are decreasing when σ increases
from zero at first and then increasing as it gets bigger, which implies there is certain
value for σ > 0 which corresponds a minimum performance of the reactor, please see
the subfigures 2–4 of Fig. 4. Also Fig. 4 indicates that both the utilisation and the yield
are decreasing functions of the residence time, τ ; treatment efficiency is a increasing
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Fig. 4 Performance of the bioreactor

function of the residence time, τ ; and both effective yield and rate of waste treatment
are increasing as the residence time grows from small value, then reach their maxima
and then decrease as τ getting larger. In other word, larger residence time results in a
higher treatment efficiency; however lower utilisation, yield, effective yield and rate
of wasttreatment.

To sum up, in this paper, we first proposed a stochastic model and then analyzed the
long time dynamics of a stochastic model. Then proved the existence of the positive
solution. The conditions for globally stochastic stability of the washout and non-
washout equilibria have been given. At the end, numerical simulations have also been
carried out, which support our theoretical analysis in previous sections.
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